原创

CSDN日报190925:操作系统、数据库、架构干货来啦

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blogdev.blog.csdn.net/article/details/101368277

CSDN日报来啦!给大家奉上当日最新鲜的技术干货!

操作系统|Unix/Linux fork后传-clone

作者:dog250

该论文的核心在于Conway分离了 “进程(process)” 和 “处理器(processpr)” 的概念:
一个进程不必特定于一个处理器上被处理。
一个处理器未必处理特定的进程。
系统中进程数量和处理器数量不需要相等。
fork为上述的核心思想提供了实现的手段。后来fork被引入到UNIX系统,成了创建新进程几十年不变的通用操作。
比较有意思的是,UNIX fork是通过著名的fork-exec序列而闻名于世的,而不是因为其提供的并行多处理手段而闻名于世,这可能是因为在线程概念出现以后,并行处理均由线程担当,也就在没有人记起fork了吧。
点击阅读全文

数据库|MySQL 从入门到出门 第 5 篇 账户和权限

作者:董旭阳TonyDong

当客户端连接 MySQL 服务器时,必须提供有效的身份认证,例如用户名和密码。当用户执行任何数据库操作时,服务器将会验证用户是否具有相应的权限,例如查询表需要 SELECT 权限,删除对象需要 DROP 权限。
为了方便用户权限的管理,MySQL 8.0 提供了角色的功能。角色(Role)是一组权限的集合。
点击阅读全文

深度学习|[深度学习]自然语言处理—ELMo

作者:小墨鱼~~

词向量在目前NLP技术发展和应用中具有重要作用,高质量的词向量对下游任务的效果至关重要。
传统word2vec等模型对一个词的表示是固定的,一成不变的,但现实场景中,同样的词在不同语境中往往表达不同的含义,为此,ELMo应运而生。ELMo(Embeddings from Language Models)是一种动态的,语境化的词向量表示方法,可以根据上下文语境来生成相应词的向量表示。
2014年的GloVe的工作中,每个词对应一个vector,对于多义词无能为力。ELMo的工作对于此,提出了一个较好的解决方案。不同于以往的一个词对应一个向量,是固定的。在ELMo世界里,预训练好的模型不再只是向量对应关系,而是一个训练好的模型。使用时,将一句话或一段话输入模型,模型会根据上线文来推断每个词对应的词向量。这样做之后明显的好处之一就是对于多义词,可以结合前后语境对多义词进行理解。比如appele,可以根据前后文语境理解为公司或水果。
ELMo通过深度双向语言模型(biLM)进行训练,主要解决了两个问题:
(1) 学习词汇用法的复杂特性,如语法和语义;
(2) 学习词汇不同语境下的一词多义性;
点击阅读全文

架构|玩转 SpringBoot 2 快速整合拦截器

作者:桌前明月

首先声明一下,这里所说的拦截器是 SpringMVC 的拦截器(HandlerInterceptor)。使用SpringMVC 拦截器需要做如下操作:
创建拦截器类需要实现 HandlerInterceptor
在 xml 配置文件中配置该拦截器
因为在SpringBoot 中没有 xml 文件,所以SpringBoot 为我们提供 Java Config 的方式来配置拦截器。配置方式有2种:
继承 WebMvcConfigurerAdapter (官方已经不建议使用)
实现 WebMvcConfigurer
接下来开始 SpringBoot 整合拦截器操作详细介绍!
点击阅读全文

移动开发|(0105)iOS开发之iOS13 暗黑模式(Dark Mode)适配

作者:沐雨07

暗黑模式的优点:
省电
沉浸式效果明显
深色背景的优势是可以突出与我们主要交互操作的内容,弱化其他辅助元素并降低屏幕整体的亮度减少视觉压力。
点击阅读全文

优质博文推荐

如果您的文章符合以下要求,欢迎大家投稿,拉您进入CSDN博文推荐群,添加运营小姐姐微信:172984955 备注:博文推荐!
1.有一定技术指导性的中高级技术文章
2.基础知识点讲解
3.最新的科技热点资讯
4.求职面试、职场进阶、人生感悟
推荐格式:文章标题+CSDN文章地址+推荐语(一两句话阐述)

推荐阅读:

文章最后发布于: 2019-09-25 15:34:55
展开阅读全文
0 个人打赏

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 终极编程指南 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览